35 research outputs found

    Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media

    Full text link
    We report the results of a study of multiphase flow in porous media. A Darcy's law for steady multiphase flow was investigated for both binary and ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager reciprocity were shown to be a good approximation of the simulation data. The dependence of the relative permeability coefficients on water saturation was investigated and showed good qualitative agreement with experimental data. Non-steady state invasion flows were investigated, with particular interest in the asymptotic residual oil saturation. The addition of surfactant to the invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.

    Lattice Boltzmann Thermohydrodynamics

    Full text link
    We introduce a lattice Boltzmann computational scheme capable of modeling thermohydrodynamic flows of monatomic gases. The parallel nature of this approach provides a numerically efficient alternative to traditional methods of computational fluid dynamics. The scheme uses a small number of discrete velocity states and a linear, single-time-relaxation collision operator. Numerical simulations in two dimensions agree well with exact solutions for adiabatic sound propagation and Couette flow with heat transfer.Comment: 11 pages, Physical Review E: Rapid Communications, in pres

    Lattice Boltzmann Simulation of Non-Ideal Fluids

    Full text link
    A lattice Boltzmann scheme able to model the hydrodynamics of phase separation and two-phase flow is described. Thermodynamic consistency is ensured by introducing a non-ideal pressure tensor directly into the collision operator. We also show how an external chemical potential can be used to supplement standard boundary conditions in order to investigate the effect of wetting on phase separation and fluid flow in confined geometries. The approach has the additional advantage of reducing many of the unphysical discretisation problems common to previous lattice Boltzmann methods.Comment: 11 pages, revtex, 4 Postscript figures, uuencode

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR

    Multi-component lattice-Boltzmann model with interparticle interaction

    Full text link
    A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confirmed numerically.Comment: 18 pages, compressed and uuencoded postscript fil

    Hydrodynamic Spinodal Decomposition: Growth Kinetics and Scaling Functions

    Full text link
    We examine the effects of hydrodynamics on the late stage kinetics in spinodal decomposition. From computer simulations of a lattice Boltzmann scheme we observe, for critical quenches, that single phase domains grow asymptotically like tαt^{\alpha}, with α.66\alpha \approx .66 in two dimensions and α1.0\alpha \approx 1.0 in three dimensions, both in excellent agreement with theoretical predictions.Comment: 12 pages, latex, Physical Review B Rapid Communication (in press

    Simulation of Flow of Mixtures Through Anisotropic Porous Media using a Lattice Boltzmann Model

    Full text link
    We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one governed by the hydrodynamic equations and one by diffusion equations. We validate our model on standard problems like Poiseuille flow, the collision of a drop with an impermeable, hydrophobic interface and the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex geometries, we simulate the invasion process of mixtures into wood spruce samples.Comment: Submitted to EPJ

    A Lattice Boltzmann method for simulations of liquid-vapor thermal flows

    Full text link
    We present a novel lattice Boltzmann method that has a capability of simulating thermodynamic multiphase flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this new method, a liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure

    Simulating liquid-vapor phase separation under shear with lattice Boltzmann method

    Full text link
    We study liquid-vapor phase separation under shear via the Shan-Chen lattice Boltzmann model. Besides the rheological characteristics, we analyze the Kelvin-Helmholtz(K-H) instability resulting from the tangential velocity difference of the fluids on two sides of the interface. We discuss also the growth behavior of droplets. The domains being close to the walls are lamellar-ordered, where the hydrodynamic effects dominate. The patterns in the bulk of the system are nearly isotropic, where the domain growth results mainly from the diffusion mechanism. Both the interfacial tension and the K-H instability make the liquid-bands near the walls tend to rupture. When the shear rate increases, the inequivalence of evaporation in the upstream and coagulation in the downstream of the flow as well as the role of surface tension makes the droplets elongate obliquely. Stronger convection makes easier the transferring of material particles so that droplets become larger.Comment: Science in China (Series G) (in press

    Fluctuations of elastic interfaces in fluids: Theory and simulation

    Full text link
    We study the dynamics of elastic interfaces-membranes-immersed in thermally excited fluids. The work contains three components: the development of a numerical method, a purely theoretical approach, and numerical simulation. In developing a numerical method, we first discuss the dynamical coupling between the interface and the surrounding fluids. An argument is then presented that generalizes the single-relaxation time lattice-Boltzmann method for the simulation of hydrodynamic interfaces to include the elastic properties of the boundary. The implementation of the new method is outlined and it is tested by simulating the static behavior of spherical bubbles and the dynamics of bending waves. By means of the fluctuation-dissipation theorem we recover analytically the equilibrium frequency power spectrum of thermally fluctuating membranes and the correlation function of the excitations. Also, the non-equilibrium scaling properties of the membrane roughening are deduced, leading us to formulate a scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where W, L and T are the width of the interface, the linear size of the system and the temperature respectively, and g is a scaling function. Finally, the phenomenology of thermally fluctuating membranes is simulated and the frequency power spectrum is recovered, confirming the decay of the correlation function of the fluctuations. As a further numerical study of fluctuating elastic interfaces, the non-equilibrium regime is reproduced by initializing the system as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure
    corecore